Development of Ethyl Hydrazide-Based Selective Histone Deacetylase 6 (HDAC6) PROTACs

16 January 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Histone deacetylases (HDACs) are promising targets for epigenetic drug discovery. Additionally, targeted degradation of HDACs has emerged as a novel approach in medicinal chemistry and chemical biology. However, most inhibitors and degraders rely on the potentially genotoxic hydroxamate as a zinc-binding group (ZBG). In this study, we present the development of HDAC6-directed proteolysis-targeting chimeras (PROTACs) featuring an ethyl hydrazide moiety as an alternative ZBG. This approach avoids the genotoxicity concerns of hydroxamates while maintaining potent HDAC6 degradation. We synthesized a series of CRBN- and VHL-recruiting PROTACs and identified several potent HDAC6 degraders (HDAC6 Dmax > 80%). Among these, 17c was the most effective, achieving an HDAC6 degradation of 91% and a DC50 value of 14 nM. Further characterization proved that 17c acts via the ubiquitin-proteasome system and chemoproteomics confirmed selective HDAC6 degradation over other HDAC isoforms.

Keywords

Histone deacetylase
HDAC degradation
Proteolysis targeting chimeras (PROTACs)
Targeted Protein Degradation (TPD)
Zinc-binding group (ZBG)

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental details, NMR spectra, and HPLC traces
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.