Efficient organic X-ray scintillators achieved by hybridized local and charge-transfer emitters with through-space heavy atom-π interactions

13 January 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The design and fabrication of organic X-ray imaging scintillators with large Stokes shift, narrow-band, fast, and efficient radioluminescence becomes an attractive research direction in many fields, such as medical diagnostics, scientific instruments and high-energy physics. However, the trade-off between these diverse scintillation properties is an enormous challenge facing almost all scintillators. To overcome this limitation, in this work, we developed a strategy based on through-space heavy atom-π interactions to improve the performance of organic scintillators by introducing alkyl bromides into hybridized local and charge transfer (HLCT) emitters. Specifically, the HLCT state's locally excited characters result in a short radiative lifetime (3.74 ns) and a narrow radioluminescence bandwidth (56 nm). The HLCT state's charge-transfer features yield a large Stokes shift (> 100 nm). Meanwhile, through-space bromine-π interactions enhance the photoluminescence quantum yield to 100%. Notably, a high X-ray imaging resolution (> 40.0 lp mm−1) was achieved, making the highest spatial resolution for organic scintillators reported to date. This work provides a method to design scintillators with excellent comprehensive performances and paves the way towards promising applications for high-resolution X-ray imaging.

Keywords

X-ray scintillators
hybridized local and charge-transfer
through-space heavy atom-π interactions

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Photophysical properties, Systhetic routes, Calculated data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.