Abstract
Conical intersections directly mediate the internal energy conversion in photoinduced processes in a wide range of chemical and biological systems. Because of the Brillouin theorem, many conventional electronic structure methods, including configuration interaction with single excitations from a Hartree-Fock reference and time-dependent density functional theory in either the linear response approximation (TDDFT) or Tamm-Dancoff approximation (DFT-TDA), have the wrong dimensionality for conical intersections between the ground state (S0) and the first excited state (S1) of the same multiplicity. This leads to unphysical state crossings. Here, we implement and assess the configuration-interaction-corrected Tamm-Dancoff approximation (CIC-TDA) that restores the correct dimensionality of conical intersections by including the coupling between the reference state and the intersecting excited state. We apply the CIC-TDA method to the S1/S0 conical intersections in ammonia (NH3), ethylene (C2H4), bithiophene (C8H6S2), azobenzene (C12H10N2), and 11-cis retinal protonated Schiff base (PSB11) in vacuo. We show that this black-box approach can produce potential energy surfaces (PESs) of comparable accuracy to multireference wave function methods. The method validated here can allow cost-efficient explorations of photoinduced electronically nonadiabatic dynamics, especially for large molecules and complex systems.
Supplementary materials
Title
Supporting Information of Conical Intersections Studied by the Configuration-Interaction-Corrected Tamm-Dancoff Method
Description
The associated coordinates and geometric parameters of ammonia, ethylene, bithiophene, azobenzene, and PSB11 are provided. Additional figures demonstrating the PESs of ethylene and PSB11 using the PBE0 functional with the variation of the HF exchange fraction are included.
Actions