Hydrogen Tunneling and Conformational Motions in Nonadiabatic Proton-Coupled Electron Transfer between Interfacial Tyrosines in Ribonucleotide Reductase

31 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ribonucleotide reductase is essential for DNA synthesis and repair in all living organisms. The mechanism of E. coli RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically. The input quantities to the PCET rate constant expression are computed with a combination of density functional theory and molecular dynamics simulations. The calculations highlight the importance of hydrogen tunneling in this PCET reaction. Compression of the distance between the proton donor and acceptor oxygen atoms of the interfacial tyrosine residues is essential to facilitate hydrogen tunneling by increasing the overlap between the reactant and product proton vibrational wavefunctions. This compression occurs by thermal conformational fluctuations of these interfacial tyrosine residues. N733 and R411 are identified as key residues that can hydrogen bond to Y731 and Y356, respectively, and thereby compete with the hydrogen-bonding interaction between Y731 and Y356 required for direct PCET. Understanding the roles of hydrogen tunneling and conformational motions in this interfacial PCET reaction, as well as identifying other residues that may impact the kinetics, is important for targeted protein engineering efforts to modulate RNR activity.

Keywords

proton-coupled electron transfer
hydrogen tunneling
enzyme

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Simulation details and additional analyses of the classical molecular dynamics, umbrella sampling simulations, and rate constant calculations.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.