Moldrug algorithm for an automated ligand binding site exploration by 3D aware molecular enumerations

26 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present Moldrug, a computational tool for accelerating the hit-to-lead phase in structure-based drug design. Moldrug explores the chemical space using structural modifications suggested by the CReM library and by optimizing an adaptable fitness function with a genetic algorithm. Moldrug is complemented by Moldrug-Dashboard, a cross-platform and user-friendly graphical interface tailored for the analysis of Moldrug simulations. To illustrate Moldrug, we designed new potential inhibitors targeting the main protease (MPro) of SARS-CoV-2 by optimizing a consensus fitness function that balances binding affinity, drug-likeness, and synthetic accessibility. The designed molecules exhibited high chemical diversity. A subset of the designed molecules were ranked using MM/GBSA and alchemical binding free energy calculations, revealing predicted affinities as low as −10 kcal mol−1. Moldrug is distributed as a Python package under the Apache 2.0 license. It offers pre-configured multi-parameter fitness functions for molecular design, while being highly adaptable for integrating functionalities from external software. Documentation and tutorials are available at https://moldrug.rtfd.io.

Keywords

drug discovery
hit to lead
molecular enumeration

Supplementary materials

Title
Description
Actions
Title
Moldrug algorithm for an automated ligand binding site exploration by 3D aware molecular enumerations
Description
SI for the working paper
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.