Enzymatic Cleanup of Formaldehyde in Aqueous Solutions

24 December 2024, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Numerous methods have been developed to address gaseous formaldehyde pollution, but most of them cannot be applied directly to eliminate the pollution of formaldehyde in aqueous solutions. Formaldehyde in aqueous solutions can be leached from formaldehyde-containing solid materials (e.g., food, wood, clothes, resins) and absorbed from gaseous formaldehyde by water. Here we developed an enzymatic cleanup technique — the reconstitution of an enzyme cocktail consisting of three coenzyme-free oxidoreductases (i.e., formaldehyde dismutase, methanol oxidase, and formate oxidase) and catalase for the complete oxidation of formaldehyde. This enzyme cocktail catalyzed the reaction of formaldehyde and dissolved dioxygen into carbon dioxide (CO2) and water, which was demonstrated by the stable isotope tracer technique. Significant levels of formaldehyde were detected from aqueous solutions leached from the squid, pomfret, fabric, and curtain in the market. When this enzyme cocktail was applied to treat the leachates of contaminated samples above, formaldehyde was eliminated with degradation ratios of up to 100%. This enzymatic cleanup technique, featuring excellent biosafety (for example, degradable catalysts and non-immunogenicity), independence of light, high degradation ratios, and no special equipment required, could be widely used to treat contaminated food, drinking water, and formaldehyde-containing leachate.

Keywords

Biocatalysis
Environmental chemistry
Enzyme cocktails
Formaldehyde
Biodegradation

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting figures, supporting tables, and author contributions.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.