Machine-learning-guided design of electroanalytical pulse waveforms

23 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Voltammetry is widely used to detect and quantify oxidizable or reducible species in complex environments. The neurotransmitter serotonin epitomizes an analyte that is challenging to detect in situ due to low concentrations and co-existing similarly structured analytes and interferents. We developed rapid-pulse voltammetry for brain neurotransmitter monitoring due to the high information content elicited from voltage pulses. Generally, the design of voltammetry waveforms remains challenging due to prohibitively large combinatorial search spaces and a lack of design principles. Here, we illustrate how Bayesian optimization can be used to hone searches for optimized rapid pulse waveforms. Our machine-learning-guided workflow (SeroOpt) outperformed random and human-guided waveform designs and is tunable a priori to enable selective analyte detection. We interpreted the black box optimizer and found that the logic of machine-learning-guided waveform design reflected domain knowledge. Our approach is straightforward and generalizable for all single and multi-analyte problems requiring optimized electrochemical waveform solutions. Overall, SeroOpt enables data-driven exploration of the waveform design space and a new paradigm in electroanalytical method development.

Keywords

Bayesian optimization
voltammetry
serotonin

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
Additional figures, tables, and text.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.