Highly Stereoselective Catalytic Synthesis of Polysubstituted Housanes: Application and Mechanistic Insights

18 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ring-strain-enabled transformations have made significant progress, pushed the boundaries of unexplored chemical space, and emerged as a powerful tool for constructing complex molecules selectively and efficiently. Among the strained ring systems, [1.1.1]propellane, bicyclobutane (BCB), and azabicyclobutane (ABB) have garnered substantial attention and found numerous synthetic applications. In contrast, the chemistry of bicyclo[2.1.0]pentane, commonly known as housane, is scantly explored due to the lack of modular synthetic approaches. Herein, we describe a highly stereoselective, catalytic strategy for synthesizing polysubstituted housanes with up to three contiguous all-carbon-quaternary centers. The reaction is very efficient, works under mild conditions, requires visible light and organic dye as a photocatalyst, and exhibits a broad substrate scope. The post-synthetic diversification of the products via an unprecedented strain-release driven diastereospecific 1,2-ester migration that allows the rapid synthesis of functionalized bicyclic imides further highlighted the synthetic utility of the current protocol. Combined experimental studies and computational investigations revealed the origin of the reactivity and stereoselectivity.

Keywords

Housane
[2+2] cycloaddition
Stereoselective
Bicyclic imides
Ester migration

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
General information, experimental procedures, characterization data for all new compounds, NMR spectra, and coordinates of starting materials, intermediates, and transition states are in the Supplementary Information. Data for the crystal structure reported in this paper have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under the deposition numbers CCDC 2404132 (for compound 3m) and CCDC 2409070 (for compound 4c).
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.