Photochemistry of Ni(II) tolyl chlorides supported by bidentate ligand frameworks

14 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Herein, we investigate the photoactivity of four NiII tolyl chloride complexes supported by either the bulky, bidentate [2.2]pyridinophane (HN2) ligand or the traditional 2,2′-bipyridine (tBubpy) ligand. Despite a change in ligand framework, we observe comparable quantum yields for the photodegradation of all four NiII complexes but do see changes in their affinity for side reactivity and stabilization of photogenerated NiI monomeric species. Additionally, we show that tBubpyNi(tolyl)Cl compounds are not bench-stable, while also observing side reactivity that leads to C-O bond formation and C-C bond formation. By varying the location of the methyl on the tolyl group, we can further perturb the quantum yield of the compounds and the extent of their side reactivity. Time-dependent density functional theory (TDDFT) and ab initio modeling (CASSCF) reveal that a smaller HOMO/LUMO gap and a more energetically accessible tetrahedral-geometry triplet state correlates with increased quantum yields and O2 side-reactivity. By leveraging our HN2 ligand, a bidentate ligand that hinders axial interactions around the nickel center, the radical side reactivity is limited. This study of this new bidentate pyridinophane ligand highlights how photoactivity is affected by the steric environment around the Ni center, and that such photoactivity is not unique to bipyridyl-supported Ni compounds.

Keywords

nickel
organometallic complexes
photochemistry
photocatalysis

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions
Title
CIF file
Description
CIF file
Actions
Title
checkCIF file
Description
checkCIF file
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.