Chaotropic or Hydrophobic Effect: Distinct binding signatures of nano-ions to a non-ionic polymer

13 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The nanometric ions (nano-ions) SiW12O404- (SiW) and B(C6H5)4- (BPh4) are considered as a superchaotropic and a hydro-phobic ion, respectively, in extension to the chaotropic side of the Hofmeister series. A distinction between chaotropic, superchaotropic and hydrophobic ions, however, has not been presented so far. Herein, we show by measurement of the viscosity B-coefficient of SiW (and other nano-ions) and of ion binding to the non-ionic polymer hydroxypropylcellulose (HPC), how chaotropic, superchaotropic and hydrophobic ions can be unambiguously distinguished. The viscosity B-coefficient of the superchaotropic SiW is positive as for hydrophobic ions, and distinct from classical chaotropic ions with a negative B-coefficient. In HPC-solution, BPh4 and SiW bind to the polymer, dramatically increasing the viscosity and the cloud point. Heating induces characteristically distinct responses for the two nano-ions: The viscosity rises for BPh4 and decreases for SiW. These effects are related to nano-ion induced aggregation and electric charging of HPC, which, upon heating, become stronger for BPh4 and weaker for SiW as shown by Small Angle X-ray and Neutron Scattering. 1H-Nuclear Magnetic Resonance and Isothermal Titration Calorimetry showed that the structural effects are linked to binding thermodynamics. Upon heating, the binding constant decreases for SiW and increases for BPh4 arising respectively from an enthalpically favorable, exothermic, chaotropic driving force or an enthalpically unfavorable, endothermic, hydropho-bic driving force. Combining the viscosity B-coefficient and sign of the binding enthalpy enables distinguishing cha-otropic, superchaotropic and hydrophobic ions. Importantly, superchaotropic binding can be stronger or weaker than hydrophobic binding depending on the temperature. Ion hydration and binding are demonstrated as powerful tools to tune polymer solution properties.

Keywords

chaotropic
Hofmeister series
hydrophobic
water
self-assembly
polyelectrolyte
polymer
superchaotropic
nano-ion

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Additional plots: nano-ion viscosities, Jones-Dole plots, DLS data, Rheology, SAXS, SANS, NMR and ITC, details on SAXS/SANS data analysis.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.