Synthesis, characterization and reactivity of a series of alkaline earth and rare earth iminophosphoranomethanide complexes

13 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Herein we report the use of the methanide ligand {CH(SiMe3)P(Ph)2=NSiMe3}– (NPC-H) in the stabilization of alkaline earth and rare earth complexes. Protonolysis of the proligand with nBu2Mg or dibenzyl precursors [M(CH2Ph)2(THF)x] (M = Ca–Ba, Eu, Yb) afforded bis-methanide complexes [M(NPC-H)2(THF)x] (1-M·(THF)x; M = Mg, Eu, Yb, x = 0; M = Ca, x = 0, 1; M = Sr, x = 0, 2; M = Ba, x = 2). The same reaction protocol with SmⅡ afforded oxidation product [Sm(NPC-H)3] (2-Sm) reproducibly, which could also be obtained via salt metathesis reaction between [{K(NPC-H)}2] and SmI3(THF)3.5. This salt metathesis methodology was also extended to [REI3(THF)x] (RE = Y, La, Pr), affording tris-methanides, [RE(NPC-H)3] (2-RE; RE = Y, La, Pr). 1-M and 2-RE were characterized by multinuclear NMR, IR spectroscopy, elemental analysis, UV-vis-NIR spectroscopy and single crystal X-ray diffraction; additionally, reactivity of 1-Yb, 2-Y and 2-La as potential synthetic precursors was probed with HN(SiMe3)2 and HOC6H3tBu2-2,6. NMR studies of the 1-M family reveal some underlying changes in the M–C bond character and bonding parameters in the ligand. We also report the first 171Yb{1H} NMR chemical shift (1046.5 ppm) of an ytterbium complex with an iminophosphoranomethanide ligand. Finally, the electronic structure of 1-Eu was studied by means of electron paramagnetic resonance and ab initio calculations.

Keywords

alkaline earth
rare earth
organometallic chemistry
EPR

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting information contianing multinuclear NMR data, crystallographic data, UV-vis spectroscopic data, magnetism (EPR, SQUID) and theoretical calculations (CASSCF)
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.