Microcrystal electron diffraction-guided discovery of fungal metabolites

12 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nature remains a vast repository of complex and functional metabolites whose structural characterization continues to drive innovations in pharmaceuticals, agrochemicals, and materials science. The cryogenic electron microscopy (cryoEM) method, microcrystal electron diffraction (microED, a 3D ED technique) has emerged as a powerful tool to structurally characterize small molecules. Despite this emerging role in structural chemistry, the cost and throughput of microED have limited its application in the discovery of natural products (NPs). While recent advances in sample preparation (e.g. ArrayED) have provided a conceptual framework to address these challenges, they have remained unproven. Herein, we report the ArrayED-driven discovery of a structurally-unprecedented family of NPs (zopalide A-E), a muurolane-type sesquiterpene glycoside (rhytidoside A), aspergillicin analogs (aspergillicin H and aspergillicin I), and four crystal structures of previously reported fungal metabolites. We provide the first examples of absolute stereochemistry determination via microED for newly annotat-ed NPs.

Keywords

ArrayED
Electron Diffraction
MicroED
3D ED
Natural Products
Metabolomics

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.