Influence of the Counterion on the Activation of Nickel(σ-Aryl) Precatalysts

12 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Complexes of the type LnNi(σ-aryl)Cl are known to be competitive precatalysts for various transformations, avoiding the use of expensive and sensitive Ni(0) precursors, such as Ni(cod)2. The in situ activation requires a transmetalation step with a nucleophile, yielding the active Ni(0) catalyst after reductive elimination. Steric hindrance is usually implemented in the σ-aryl group (e.g. o tolyl or 1 naphthyl) to enhance kinetic stability. Simultaneously, this steric hindrance can render the activation process slow, thus increasing the reaction time and possibly reducing the amount of active catalyst. To circumvent this issue, we envisaged substitution of the anionic chloride ligand of the precatalyst with more labile ligands that would facilitate transmetalation. In this work, a series of (Xantphos)Ni(o-tolyl)X complexes was successfully synthesized and the effect of the counterion X on the reaction profile was investigated using C–S cross-coupling as the model reaction. (Xantphos)Ni(o-tolyl)OTf was identified as the most efficient precatalyst, probably due to the weak coordinating ability of the triflate anion that facilitated the activation step. Finally, this concept was also studied in Suzuki-Miyaura coupling and Buchwald-Hartwig amination reactions using (dppf)Ni(o tolyl)X precatalysts.

Keywords

nickel catalysis
cross-coupling
precatalyst
catalyst activation
counterion

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Experimental procedures and analytical data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.