Entangled excited state branching processes in a Ru(II)-based push-pull triad

13 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Compared with triplet metal-to-ligand charge transfer (3MLCT) states, charge-separated (3CS) excited states involving organic moieties, such as triplet intra-ligand or ligand-to-ligand charge transfer (3ILCT and 3LLCT) states, tend to possess longer-lived excited states due to the weak spin-orbit coupling with the closed-shell ground state (GS). Thus, the combination of both inorganic and organic chromophores enables the isolation of triplet excited states onto the organic chromophore. Herein, we aim to elucidate the entangled excited-state relaxation processes in a Ru(II)-terpyridyl push-pull triad (RuCl) in a joint spectroscopic-theoretical approach combining steady-state and time-resolved spectroscopy as well as quantum chemical simulations and dissipative quantum dynamics. The kinetics of the underlying electron transfer (ET) processes involving the low-lying 3MLCT, 3ILCT and 3LLCT excited states were investigated experimentally and computationally within a semi-classical Marcus picture, which allowed us to evaluate the ET processes between along the 3MLCT-3ILCT and the 3MLCT-3LLCT channels. Finally, dissipative quantum dynamical simulations – capable of describing incomplete ET processes involving all three states of interest – enabled us to unravel the competitive excited state relaxation channels at the short timescale vs. at the long timescale among the strongly coupled 3MLCT-3ILCT states as well as the weakly coupled 3MLCT/3ILCT-3LLCT states.

Supplementary materials

Title
Description
Actions
Title
Entangled excited state branching processes in a Ru(II)-based push-pull triad
Description
Supporting information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.