Electrostatic interaction between SARS-CoV-2 and charged surfaces: Spike protein evolution changed the game

06 December 2024, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Previous works show a key role of electrostatics for the SARS-CoV-2 virus in aspects such as virus-cell interactions or virus inactivation by ionic surfactants. Electrostatic interactions depend strongly on the variant since the charge of the Spike protein (responsible for virus - environment interactions) evolved across the variants from the highly negative Wild Type (WT) to the highly positive Omicron variant. The distribution of the charge also evolved from diffuse to highly localized. These facts suggest that SARS-CoV-2 should interact strongly with charged surfaces in a way that changed during the virus evolution. This question is studied here by computing the electrostatic interaction between WT, Delta and Omicron Spike proteins with charged surfaces using a new method (based on Debye-Huckel theory) that provides efficiently general results as a function of the surface charge density σ. We found that the interaction of the WT and Delta variant spikes with charged surfaces is dominated by repulsive image forces proportional to σ2 originated at the protein/water interface. On the contrary, the Omicron variant shows a distinct behaviour, being strongly attracted to negatively charged surfaces and repelled from positively charged ones. Therefore, the SARS-CoV-2 virus has evolved from being repelled by charged surfaces to being efficiently adsorbing to negatively charged ones.

Keywords

SARS-CoV-2
Electrostatics
Poisson-Boltzmann equation
Debye-Hückel

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Additional details for the calculations, tables with data and tests of the methodology
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.