Light-Activatable Photochemically Targeting Chimeras (PHOTACs) Enable the Optical Control of Targeted Protein Degradation of HDAC6

09 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Proteolysis targeting chimeras (PROTACs) are heterobifunctional modalities that induce protein degradation via a catalytic mode of action. Photochemically targeting chimeras (PHOTACs) are a subset of PROTACs designed for light-activated protein degradation, thereby offering precise spatiotemporal control. In this study, we report the design, solid-phase synthesis, and characterization of the first PHOTACs targeting histone deacetylase 6 (HDAC6). We achieved this by incorporating an azobenzene photoswitch into our previously developed HDAC6-selective PROTAC A6. Among the synthesized compounds, PHOTAC 12 demonstrated no HDAC6 degradation in the absence of light but showed significant degradation upon activation to its cis-state with 390 nm light irradiation. Notably, we show that PHOTAC 12 in the cis-state shows significantly improved ternary complex formation compared to the trans-state correlating with its degradation efficacy. Overall, PHOTAC 12 is a promising lead compound for the development of light-activatable HDAC6 degraders.

Keywords

Epigenetics
HDAC
PHOTAC
PROTAC
Targeted protein degradation

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental section, NMR spectra, and HPLC traces
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.