Nanoconfinement-induced electrochemical ion-solvent cointercalation in pillared titanate host materials

05 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Electrochemical ion-solvent cointercalation reactions are an avenue to reach improved kinetics compared to the corresponding intercalation of desolvated ions. Here, we demonstrate the impact of different structural pillar molecules on the electrochemical Li+ intercalation mechanism in expanded hydrogen titanate (HTO) electrode materials. We show that interlayer-expansion of HTO with organic pillars can enable cointercalation reactions. Their electrochemical reversibility is drastically improved when non-cross-linking pillars are employed that expand and separate the host material’s individual layers, underlining the impact of the electrochemo-mechanics of the nanoconfined interlayer space. This pillared HTO structure results in an increased Li+ storage capacity and reversibility compared to pristine HTO. We derive structural models of the pillared HTO host materials based on combined experiments and theoretical calculations, and employ electrochemical operando experiments to unambiguously demonstrate the nanoconfinement-induced cointercalation mechanism in pillared HTO electrode materials. The work demonstrates the potential of nanoconfined pillar molecules to modify host materials and enable highly reversible cointercalation reactions with improved capacity and kinetics.

Keywords

Nanoconfinement
ion solvation
cointercalation
hydrogen titanate

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental methods, supplementary experimental and computational data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.