Photoinduced electron transfer across phospholipid bilayers in anaerobic and aerobic atmospheres

03 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In natural photosynthesis, light-driven electron transfer across the thylakoid membrane enables efficient charge separation and the confinement of reaction spaces for generating NADPH and CO2 and oxidation of water. These reactions are complementary redox reactions and require different reaction conditions for optimal performance. However, current artificial photosynthesis studies only take place in the bulk and are sensitive towards oxygen and air, which limits their applicability under aerated and water-splitting conditions. Herein, we report light-driven electron transfer across a lipid bilayer membrane of liposome vesicles via a rigid oligoaromatic molecular wire that allows to electronically connect an oxidation and reduction reaction which are spatially separated by the membrane. The molecular wire has a simple, symmetric, easy-to-synthesize design based on benzothiadiazole and fluorene units and absorbs in the visible spectrum which makes it suitable for solar energy conversion. The model reactions in this study are light-driven NADH oxidation on one side of the membrane and light-driven reduction of an organic water-soluble dye in the bulk phase of liposomes. Additionally, the system is active in both aerobic and anaerobic atmospheres, rendering it ideal for aerobic conditions or reactions that produce oxygen such as solar-driven water splitting and artificial photosynthesis applications.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Data supporting the main manuscript.
Actions
Title
Movies MD simulations
Description
Movies of the molecular dynamicssimulations.
Actions
Title
checkcif
Description
checkcif supporting the single crystal structure.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.