Abstract
The recently-synthesized monolayer fullerene network in a quasi-hexagonal phase (qHP-C60) exhibits superior electron mobility and optoelectronic properties compared to molecular fullerene (C60), making it highly promising for a variety of applications. However, the microscopic carrier dynamics of qHP-C60 remain unclear, particularly in realistic environments, which are of significant importance for applications in optoelectronic devices. Unfortunately, traditional $ab~initio$ methods are prohibitive for capturing the real-time carrier dynamics of such large systems due to their high computational cost. In this work, we present the first real-time electron-nuclear dynamics study of qHP-C60 using velocity-gauge density functional tight binding, which enables us to perform several picoseconds of excited-state electron-nuclear dynamics simulations for nanoscale systems with periodic boundary conditions. When applied to C60, qHP-C60, and their solvated counterparts, we demonstrate that water/moisture significantly increases the electron-hole recombination time in C60 but has little impact on qHP-C60. Our excited-state electron-nuclear dynamics calculations show that qHP-C60 is extremely unique and enable an exploration of time-resolved dynamics for understanding excited-state processes of large systems in complex, solvated environments.