DeepConf: Leveraging ANI-ML Potentials for Exploring Local Minima with A Focus on Bioactive Conformations

22 November 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Here, we introduce a low energy conformer generation algorithm using ANI-ML potentials at the DFT accuracy and benchmark in reproducing bioactive conformations. We show that the method is efficient when the initial starting structure is far from equilibrium, when the ML potentials are stuck in non-smooth regions, and when the quality of the conformers in a less conformer size is demanded. We specifically focus on conformations due to rotations around the single bonds. For the first time, we assess the performance of ANI-ML potentials using our conformer generation algorithm, DeepConf, in addition to previously reported Auto3D (J. Chem. Inf. Model. 2022, 62, 5373–5382) using the same potentials to reproduce bioactive conformations as well as providing a guideline for bioactive conformation evaluation processes. Our results show that the ANI-ML potentials can reproduce the bioactive conformations with mean value of the root-mean-square-deviation (RMSD) less than 0.5 Å, outperforming the limit of conventional methods. The code offers several features including but not limited to geometry optimization, fast conformer generations via single point energies (SPE), different minimization algorithms, different ML-potentials, or high-quality conformers in the smallest amount of ensemble sizes. It is available free of charge (documentation and test files) at https://github.com/otayfuroglu/DeepConf.

Keywords

torsion
machine learning
ANI
potential energy surface
Conformer

Supplementary materials

Title
Description
Actions
Title
Supplementary
Description
Figures and Tables extended versions as mentioned in the main text
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.