DiffractGPT: Atomic Structure Determination from X-ray Diffraction Patterns using Generative Pre-trained Transformer

21 November 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Crystal structure determination from powder diffraction patterns is a complex challenge in materials science, often requiring extensive expertise and computational resources. This study introduces DiffractGPT, a generative pre-trained transformer model designed to predict atomic structures directly from X-ray diffraction (XRD) patterns. By capturing the intricate relationships between diffraction patterns and crystal structures, DiffractGPT enables fast and accurate inverse design. Trained on thousands of atomic structures and their simulated XRD patterns from the JARVIS-DFT dataset, we evaluate the model across three scenarios: (1) without chemical information, (2) with a list of elements, and (3) with an explicit chemical formula. The results demonstrate that incorporating chemical information significantly enhances prediction accuracy. Additionally, the training process is straightforward and fast, bridging gaps between computational, data science, and experimental communities. This work represents a significant advancement in automating crystal structure determination, offering a robust tool for data-driven materials discovery and design.

Keywords

XRD
DFT
AI
GPT

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.