Structural Characterisation and Dynamics of a Paramagnetic {Cr12Ni3} Seahorse in Non-Crystalline Phases

21 November 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The complex [{Ni(cyclen)}2Cr12NiF18(O2CtBu)24] (where cyclen = 1,4,7,10-tetrazacyclododecane) crystallises as a fifteen-metal chain that is shaped like a seahorse. Given this is one of the longest finite, paramagnetic chains found, we were intrigued whether this unusual structure is induced during crystal growth or also maintained in other phases. We report electron paramagnetic resonance spectroscopy, small angle X-ray scattering and atomistic molecular dynamics simulations, demonstrating that the S-structure from crystal is stable in powder and solution. Using ion mobility mass spectrometry (IM-MS), we revealed the coexistence of S-shaped structures and a closed isomeric assembly in the gas phase. Collision-induced dissociation mass spectrometry studies monitored by IM-MS show the rearrangement of the cyclic seahorse to the S-shaped conformation, as well as the dissociation to a cyclic, seven-metal complex.

Keywords

ion mobility mass spectrometry
paramagnetic compounds
polymetallic complexes
collision-induced dissociation
molecular dynamics simulation
small angle X-ray scattering
electron paramagnetic resonance spectroscopy

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information for Main Paper
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.