Abstract
This study proposes a new fundamental formula that describes in a more coherent way, the rise and fall of liquids in capillaries. The variation of the contact angle classically associated with these phenomena appears to be the indirect result of a more authentic physical parameter, which we call the apparent capillary range. This range depends on factors expected to affect the contact angle, such as liquid-solid adhesion forces, liquid-liquid cohesion forces, liquid density, gravitational forces and the geometric shape of the capillary section. Our main objective in this work is not to criticize the classical theorya task that has been largely accomplishedbut to present a more general and coherent approach, which perfectly reconciles the thermodynamic and mechanical points of view and makes the interpretation of various configurations clearer. This new perspective can serve as a platform to guide researchers efforts toward more promising results. In the first part of this work, we discuss the theoretical basis of the new formula using common examples. In the second part, we introduce the more explicit form of this formula, thus allowing a more precise quantification of wettability by providing access to the direct measurement of liquid-solid adhesive forces. The third part proposes a method for measuring static surface tension without the adverse effects of the substrate.