A novel approach for the synthesis of MgCl+ and Mg2+ cationic electrolytes: the effect of polydentate ethers on the structure and electrochemistry of chlorides bridged magnesium phenyl aluminates

14 November 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The development of efficient electrolytes is crucial for advancing magnesium (Mg) batteries, which hold promise for next-generation energy storage systems. Previously, electrolytes such as [Mg2(µ-Cl)3•6THF]+ [Ph4Al]-, A, and [Mg2(µ-Cl)3•6THF]+ [Ph3AlCl]-, B, have been studied, but their performance has been limited by issues related to ion dissociation and electrochemical stability. In this study, we report the synthesis of novel electrolytes by introducing polydentate ligands to these known systems, leading to the formation of [DME•MgCl•3THF]+ [Ph4Al]- 1 and [DG•MgCl•2THF]+ [Ph4Al]- 2, [Mg•3DME]2+ [Ph3AlCl-]2 3 and [Mg•2DG]2+ [Ph3AlCl-]2 4. These firstly discovered compounds were thoroughly characterized using X-ray crystallography and NMR spectroscopy. Our findings reveal that the choice of counter anion plays a pivotal role in the products and mechanism of the dissociation of the bridged [Mg2(µ-Cl)3•6THF]+ cation upon the addition of polydentate ligands. Specifically, with the [Ph4Al]- counter anion (precursor A), the dissociation results in a [MgCl]+ mono-cation, while with the [Ph3AlCl]- counter anion (precursor B), a [Mg]2+ divalent cation is formed. The resultant MgCl2 byproduct enhances solubility, expands electrochemical windows, and improves cyclic stability, leading to superior electrochemical performance of the new electrolytes (1, 2, 3, and 4) compared to the original precursors. These insights offer valuable guidelines for the design and synthesis of advanced electrolytes for rechargeable magnesium batteries, potentially paving the way for more efficient and stable energy storage solutions.

Keywords

Rechargeable Mg batteries
Mg salts
ethereal Mg2+ salts solutions
MgCl+ ion

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.