Schedule Optimization for Chemical Library Synthesis

12 November 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Automated chemistry platforms hold the potential to enable large-scale organic synthesis campaigns, such as producing a library of compounds for biological evaluation. The efficiency of such platforms will depend on the schedule according to which the synthesis operations are executed. In this work, we study the scheduling problem for chemical library synthesis, where operations from interdependent synthetic routes are scheduled to minimize the makespan—the total duration of the synthesis campaign. We formalize this problem as a flexible job-shop scheduling problem with chemistry-relevant constraints in the form of a mixed integer linear program (MILP), which we then solve in order to design an optimized schedule. The scheduler's ability to produce valid, optimal schedules is demonstrated by 720 simulated scheduling instances for realistically accessible chemical libraries. Reductions in makespan up to 73%, with an average reduction of 38%, are observed compared to the baseline scheduling approach.

Keywords

chemical library synthesis
schedule optimization
generalized flexible job-shop
automated chemistry

Supplementary materials

Title
Description
Actions
Title
Supporting Information: Schedule Optimization for Chemical Library Synthesis
Description
Supporting Information: Schedule Optimization for Chemical Library Synthesis
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.