An integral-direct GOSTSHYP algorithm for the computation of high pressure effects on molecular and electronic structure

06 November 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

To simulate the effects of high pressure on molecular and electronic structure, methods based on the polarizable continuum model have emerged as a serious contender to the conventionally employed periodic boundary conditions. In this work, we present a highly efficient integral-direct algorithm for the Gaussians On Surface Tesserae Simulate HYdrostatic Pressure (GOSTSHYP) method. We examine the efficiency of this implementation on large chains of α-D-glucose units. Furthermore, we investigate the effects of high pressure on the binding energy of a supersystem consisting of a buckminster fullerene and a corannulene pincer system, and juxtapose various types of surfaces that constitute the boundary between the molecule and the implicit solvent. Our efficient implementation of the GOSTSHYP model paves the way for large-scale simulations of molecules under pressure.

Keywords

GOSTSHYP
High Pressure Effects
Density Functional Theory
Efficient Implementation

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.