Uncovering chemical principles governing nanophase formation in ternary solvents

04 November 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nanoscopic phases, such as oil-enriched pockets dispersed in water, have been observed in ternary mixtures of oil, water, and cosolvent in the absence of surfactants. Such nanophases are found across a portion of compositions within the single-phase region of the ternary phase diagram. However, the principles governing the formation of nanophases under certain conditions but not others, regarding both volumetric and chemical makeup, are unclear. Here, the nanophase behavior of ternary mixtures of water with a suite of cosolvents and oils containing strategically chosen functional groups is systematically analyzed to probe the role of intermolecular interactions. Dynamic light scattering is used to quantify the nanophase structure. It was found that stronger classes of intermolecular interactions such as H-bonding or n-Π* interactions between oil and cosolvent notably contribute to forming thermodynamically stable nanophases. Ternary mixtures in which the oil has only van der Waals interactions with the water and cosolvent do not stabilize nanophases detectable by dynamic light scattering. Aromatic groups favor nanophase formation. The most prominent structuring (highest number and largest sizes of nanophases) is found in water-rich compositions near the miscibility gap. This experimental study provides chemical insight into the chemical formulation of ternary solvent mixtures favoring nanophase formation.

Keywords

Nanophases
ternary solvents
intermolecular interactions
dynamic light scattering
phase behavior

Supplementary materials

Title
Description
Actions
Title
supporting information
Description
supporting experimental methods, figures, table
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.