Photoresponsive Carbodiimide-Fueled Transiently Crosslinked Polymer Hydrogels

01 November 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Light- and carbodiimide-responsive hydrogels were synthesized. An “AND” gate was developed using ortho-nitrobenzyl (ONB) protected carboxylic acids in the polymer backbone. Crosslinking was only realized in the presence of both UV stimulus to photocleave the ONB group and carbodiimide fuels to induce anhydride bonds. In the presence of water, the anhydride bonds eventually hydrolyze to carboxylic acids and the system returns to the solution state. The mechanical properties of the out-of-equilibrium hydrogels were investigated using oscillatory rheology to examine the effects of deprotection efficiency, carbodiimide concentration and chain architecture on the hydrogels’ moduli and decrosslinking time. Higher moduli and longer decrosslinking times were found with increased carbodiimide concentration and deprotection efficiency. These discoveries unveil new possibilities for photoresponsive chemically fueled soft materials.

Keywords

Carbodiimide
Fueled Chemistry
Photochemistry
Responsive Chemistry

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.