Controlled Introduction of sp3 quantum defects in Fluorescent Carbon Nanotubes by Mechanochemistry

30 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Precise control over low-dimensional materials holds an immense potential for their applications in sensing, imaging and information processing. The controlled introduction of sp3 quantum defects (color centers) can be used to tailor the optoelectronic properties of single-walled carbon nanotubes (SWCNTs) in the tissue transparency (> 800 nm) and the telecommunication window. However, an uncontrolled functionalization of SWCNTs with defects leads to a loss of the NIR fluorescence. Here, we use mechanochemistry with aryldiazonium salts to create quantum defects in SWCNTs. The reaction proceeds within 5 min without solvents or illumination and can be controlled by a varied mechanochemical energy impact. By working in the solid-state, this method presents an alternative synthetic route and marks a crucial step for tailoring photophysics of SWCNTs.

Keywords

Mechanochemistry
Carbon Nanotubes

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.