Force-Activated Spin-Crossover in Fe2+ and Co2+ Transition Metal Mechanophores

24 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Transition metal mechanophores exhibiting force-activated spin-crossover are attractive design targets, yet large-scale discovery of them have not been pursued due in large part to the time-consuming nature of trial-and-error experiments. Instead, we leverage density functional theory (DFT) and external force explicitly included (EFEI) modeling to study a set of 394 feasible Fe2+ and Co2+ mechanophore candidates with tridentate ligands that we curate from the Cambridge Structural Database. Among nitrogen-coordinating low-spin complexes, we observe the prevalence of moderate-force spin-crossover, and we identify 155 Fe2+ and Co2+ spin-crossover mechanophores and derive their threshold force for low-spin to high-spin transition (FSCO). The calculations reveal strong correlations of FSCO with spin-splitting energies and coordination bond lengths, facilitating rapid prediction of FSCO using force-free DFT calculations. Then, among all Fe2+ and Co2+ spin-crossover mechanophores, we further identity 11 mechanophores that combine labile spin-crossover and good mechanical robustness that are thus predicted to be the most versatile for force-probing applications. We discover two classes of mer-symmetric complexes comprising specific heteroaromatic rings within extended π-conjugation that give rise to Fe2+ mechanophores with these characteristics. We expect the set of spin-crossover mechanophores, the design principles, and the computational approach to be useful in guiding the high-throughput discovery of transition metal mechanophores with diverse functionalities and broad applications, including mechanically activated catalysis.

Keywords

mechanochemistry
spin crossover

Supplementary materials

Title
Description
Actions
Title
Supplementary tables and figures
Description
Supplementary tables and figures
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.