Decoupling First-Cycle Capacity Loss Mechanisms in Sulfide Solid-State Batteries

24 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Solid-state batteries (SSBs) promise more energy-dense storage than liquid electrolyte lithium ion batteries (LIBs). However, first-cycle capacity loss is higher in SSBs than in LIBs due to interfacial reactions. The chemical evolution of key interfaces in SSBs has been extensively characterized. Electrochemically, however, we lack a versatile strategy for quantifying the reversibility of solid electrolyte (SE) redox for established and next-generation SSB electrolytes. In this work, we perform tailored electrochemical tests and operando X-ray diffraction to disentangle reversible and irreversible sources of capacity loss in positive electrodes composed of Li6PS5Cl SE, Li(Ni0.5Mn0.3Co0.2)O2 (NMC), and carbon conductive additives. We leverage an atypically low voltage cutoff (2.0 V vs. Li/Li+) to quantify the reversibility of SE redox. Using slow (5.5 mA g−1 NMC) cycling paired with > 100 h low-voltage holds, our cells achieve a surprising 96.2% first-cycle Coulombic efficiency, which is higher than previously reported (mean: 72%, maximum: 91.6% across surveyed literature). We clarify that sluggish NMC relithiation kinetics have been historically mistaken for permanently irreversible capacity loss. Through systematic decoupling of loss mechanisms, we uncover the unexpected reversibility of SE redox and isolate the major contributors to capacity loss, outlining a strategy for an accurate assessment of next-generation SE materials and interface modifications.

Keywords

Solid-state batteries
Sulfide
Solid electrolyte

Supplementary materials

Title
Description
Actions
Title
Supplemental Information
Description
Electrochemistry provided as support for main text.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.