Abstract
The binding affinity between a drug molecule and its target, measured by absolute binding free energy (ABFE), is a crucial factor in the lead discovery phase of drug development. Recent research has highlighted the potential of in silico ABFE predictions to directly aid drug development by allowing for the ranking and prioritization of promising candidates. This paper introduces an open-source Python workflow called FEP-SPell-ABFE, designed to automate ABFE calculations with minimal user involvement. The workflow requires only three key inputs: a receptor protein structure in PDB format, candidate ligands in SDF format, and a configuration file (config.yaml) that governs both workflow and molecular dynamics simulation parameters. It produces a ranked list of ligands along with their binding free energies in Comma-Separated Values (CSV) format. The workflow leverages SLURM (Simple Linux Utility for Resource Management) for automating task execution and resource allocation across modules. A usage example and several benchmark systems for validation are provided. The FEP-SPell-ABFE workflow, along with a practical example, is publicly accessible on GitHub at https://github.com/freeenergylab/FEP-SPell-ABFE, distributed under the MIT License.