Expanding Polycyclic Tetramate Macrolactam (PoTeM) Core Structure Diversity by Chemo-Enzymatic Synthesis and Bioengineering

17 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Polycyclic tetramate macrolactams (PoTeMs) represent a growing class of bioactive natural products that are derived from a common tetramate polyene precursor, lysobacterene A, produced by an unusual bacterial iterative polyketide synthase (PKS) / non-ribosomal peptide synthetase (NRPS). The structural and functional diversity of PoTeMs is biosynthetically elaborated from lysobacterene A by pathway-specific cyclizing and modifying enzymes. This results in diverse core structure decoration and cyclization patterns. However, approaches to directly edit the PoTeM carbon skeleton are currently not existing. We thus set out to modify the PoTeM core structure by exchanging the natural L-ornithine-derived building block by L-lysine, hence extending macrocycle size by an additional CH2 group. We developed streamlined synthetic access to lysobacterene A and the corresponding extended analog and achieved cyclization of both precursors by the cognate PoTeM cyclases IkaBC in vitro. This chemo-enzymatic approach corroborated the catalytic competence of IkaBC to produce a larger macrolactam yielding homo-ikarugamycin. We thus engineered the adenylation domain active site of IkaA to directly accept L-lysine, which upon co-expression with IkaBC delivered a recombinant bacterial homo-ikarugamycin producer. Our work establishes an entirely new PoTeM structural framework and sets the stage for the biotechnological diversification of the PoTeM natural product class in general.

Keywords

PoTeM
protein engineering
total synthesis
chemo-enzymatic
natural products

Supplementary materials

Title
Description
Actions
Title
ESI
Description
Experimental detail, analytical data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.