Excited-State Cu-BINAP Catalysis for Molecular Valorization

16 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The use of visible light to drive chemical transformations has a history spanning over a century. However, the development of photo-redox catalysts to efficiently harness light energy is a more recent advancement, evolving over the past two decades. While ruthenium and iridium-based photocatalysts dominate due to their photostability, long excited-state lifetimes, and high redox potentials, concerns about sustainability and cost have shifted attention to first-row transition metals. Luminescent Cu(I) complexes have emerged as promising alternatives, offering open-shell reactivity and tunable photoelectrochemical properties. This review (i) provides an overview of the structural, photophysical, and electrochemical properties governing copper(I) complexes; (ii) highlights advances in Cu(I)-BINAP catalysis for carbon-carbon and carbon-heteroatom bond formations under mild conditions; and (iii) analyzes the trajectory of this catalytic system, addressing challenges and identifying opportunities for further development.

Keywords

Excited-State Copper Catalysis
Cu-BINAP
Visible-Light Induced

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.