Carbon-to-nitrogen atom swap enables direct access to benzimidazoles from drug-like indoles

14 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The ability to selectively edit organic molecules at the atomic level has the potential to streamline lead discovery and optimization in the pharmaceutical and agrochemical industry. While numerous atom insertion and deletion reactions have recently been reported, examples of single atom swaps remain scarce due to the challenge of orchestrating the selective cleavage and formation of multiple chemical bonds around the same atom. We herein report a method for the carbon-to-nitrogen atom swap in N-alkyl indoles, allowing for the direct conversion of indoles to the corresponding benzimidazoles. The reaction leverages the innate reactivity of the indole scaffold to engage in an initial oxidative cleavage step, followed by oxidative amination, Hofmann-type rearrangement and cyclization. This complex sequence of steps is mediated by the simple combination of commercially available PIDA and ammonium carbamate as nitrogen atom source. The reaction tolerates a wide range of functional groups which is demonstrated by the interconversion of 15 drug-like molecules implying its immediate applicability across a wide range of discovery programs. Furthermore, it shows how leveraging the innate reactivity of a common heterocycle can unlock otherwise challenging skeletal editing reactions.

Keywords

indole
benzimidazole
skeletal editing
nitrogen insertion
heterocycles
atom swap
late-stage functionalization

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.