Conformational Dynamics of the Pyrene Excimer

14 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The conformational dynamics of the pyrene excimer play a critical role in its unique fluorescence properties. Yet, the influence of multiple local minima on its excited-state behavior remains underexplored. Using a combination of time-dependent density functional theory (TD-DFT) and unsupervised machine learning analysis, we have identified and characterized a diverse set of stable excimer geometries in the first excited state. Our analysis reveals that rapid structural reorganization towards the most stable stacked-twisted conformer dominates the excimer’s photophysics, outcompeting radiative relaxation. This conformer, which is primarily responsible for the characteristic red-shifted, structureless fluorescence emission, reconciles experimental observations of long fluorescence lifetimes and emission profiles. These findings provide new insights into the excited-state dynamics of excimers. They may inform the design of excimer-based materials in fields ranging from organic electronics to molecular sensing.

Keywords

Pyrene excimer
Conformational dynamics
Fluorescence emission
Time-dependent density functional theory (TD-DFT)
Unsupervised machine learning

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.