Rapid 3D printing of unlayered, tough epoxy-alcohol resins with late gel points via dual-color curing technology

30 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Additive manufacturing technologies and in particular vat photopolymerization promise complex structures that can be made in a fast and easy fashion for highly individualized products. While the technology has upheld this promise many times already, some polymers are still out of reach or at least problematic to print reliably. High-performance epoxide-based resins, which are regulated by chain transfer via multifunctional alcohols, are a typical example for resins with late gel points, which require long irradiation times and high light intensities to print. Therefore, we have developed a dual-colour printing approach where rapid radical curing of a soft, wide-meshed polymer network facilitates fast and easy 3D structuring of the subsequently slow curing step growth formulation at an orthogonal initiation-wavelength regime. Thereby the methacrylate system acts as a scaffold for an uncured epoxide alcohol system during the printing process, which is then cured with UV light post-printing. This way tough alcohol-regulated epoxy-systems become accessible to vat photopolymerization achieving outstanding high-resolution 3D printed parts without significant layering effects. The demonstrated wide-meshed matrix-assisted printing approach has the potential to make a multitude of slowly curing resins accessible to vat photopolymerization techniques, at low irradiation intensities and high curing speeds.

Keywords

additive manufacturing
multi-wavelength curing
scaffold-aided 3D printing
photopolymer
toughening
interpenetrating network
late gel point

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Contains supplementary schemes, figures, tables and discussions referenced in the main manuscript.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.