Discovery of a broad-spectrum, fluorinated macrobicyclic antibiotic through chemical synthesis

27 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report the discovery through chemical synthesis of BT-33, a fluorinated macrobicyclic oxepanoprolinamide antibiotic. BT-33 potently inhibits the growth of multidrug-resistant clinical isolates of Gram-positive and Gram-negative bacteria and has an extended half-life in vivo relative to its predecessors cresomycin and iboxamycin. We report structure-activity relationships within the macrobicyclic substructure, which reveal structural features that are essential to the enhanced potency of BT-33 as well as its increased metabolic stability. We determine the structure of BT-33 in complex with the bacterial ribosome by X-ray crystallography, analysis of which suggests that the newly introduced fluorine atom makes an additional Van der Waals contact with nucleobase G2505. Finally, we show that the C7-methyl group of BT-33 rigidifies the macrocyclic ring in a conformation that is highly preorganized for ribosomal binding by using variable-temperature 1H-NMR experiments, density-functional theory calculations, and vibrational circular dichroism spectroscopy to compare macrobicyclic homologs of BT-33 and a C7-desmethyl analog.

Supplementary materials

Title
Description
Actions
Title
Supplementary information for: Discovery of a broad-spectrum, fluorinated macrobicyclic antibiotic through chemical synthesis
Description
Supplementary figures S1-S7, supplementary tables S1-S4, methods for the preparation of OPP analogs, X-ray structure report for intermediate 8, geometries and energies for DFT-Optimized Structures, and a catalog of NMR spectra
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.