Steric Stabilization of Colloidal UiO-66 Nanocrystals with Oleylammonium Octadecylphosphonate

25 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report the synthesis and characterization of octahedral UiO-66 nanocrystals (d = 17–25 nm) terminated with amine, oleate, and octadecylphosphonate ligands. Acetate capped UiO-66 nanocrystals were dispersed in toluene using oleic acid and oleylamine. Ligand exchange with octadecylphosphonic acid produces ammonium octadecylphosphonate terminated nanocrystals with coverages of 2.6–3.2 chains nm-2 that stabilize colloidal dispersions in nonpolar solvents. Solution phase 1H and 31P nuclear magnetic resonance (NMR) spectra of the linkers and surface ligands display line shapes that are broadened by slow tumbling of the nanocrystals. Octadecylphosphonate functionalized MOFs have up to ~30% carbon dioxide absorption capacities compared to bulk UiO-66 after correcting for the ligand mass. These results illustrate the intriguing perspective that MOF nanocrystals can be characterized and manipulated like a macromolecular complex and represent an important milestone in the nascent field of MOF surface science.

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Experimental details, MOF chemical formula determination method, supplementary figures, BET/TGA/CO2 capture analysis, modelling, and solution phase NMR spectra
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.