Abstract
A novel molecular structure that merges the fields of molecular optical cycling with molecular photoswitching is presented. It is based on a photoswitching molecule azobenzene functionalized with one and two CaO- groups, which can act as optical cycling centers (OCCs). This paper characterizes the electronic structure of the resulting model systems, focusing on three questions: (1) how the electronic states of the photoswitch are impacted by a functionalization with an OCC; (2) how the states of the OCC are impacted by the scaffold of the photoswitch; (3) whether the OCC can serve as spectroscopic probe of isomerization. The experimental feasibility of the proposed design and the advantages that organic synthesis can offer in fur- ther functionalization of the molecular scaffold are also discussed. This work brings into the field of molecular optical cycling a new dimension of chemical complexity, intrinsic only to polyatomic molecules.