GOCIA: grand canonical Global Optimizer for Clusters, Interfaces, and Adsorbates

19 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Restructuring of surfaces and interfaces underlie the activation and/or deactivation of a wide spectrum of heterogeneous catalysts and functional materials. The statistical ensemble representation can provide unique atomistic insights into this fluxional and metastable realm, but constructing the ensemble is very challenging, especially for the systems with off-stoichiometric reconstruction and varying coverage of mixed adsorbates. Here we report GOCIA, a general-purpose global optimizer for exploring the chemical space of these systems. It features the grand canonical genetic algorithm (GCGA), which bases the target function on the grand potential and evolves across the compositional space, as well as many useful functionalities and implementation details. GOCIA has been applied to various systems in catalysis, from cluster to surfaces, and from thermal to electro-catalysis.

Keywords

Global Optimization
Grand Canonical Ensemble
Statistical Mechanics
Ab Initio Thermodynamics
Python
Computational Catalysis
Surface Reconstruction
Catalyst Restructuring
Adsorbate Coverage
Adsorption Configurations
Fluxoinality
Catalytic Interface

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.