Toward Ab initio Simulation of Operando Raman Spectroscopy: Application to Sulfur/Carbon Copolymer Cathodes in Li-S Batteries

19 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Sulfur/carbon copolymers have emerged as a promising alternative for conventional crystalline sulfur cathodes for lithium-sulfur batteries. Among these, sulfur–n–1,3– diisopropenylbenzene (S/DIB) copolymers, which present a network of DIB molecules interconnected via sulfur chains, have particularly shown a good performance and, there- fore, have been under intensive experimental and theoretical investigations. However, their structural complexity and flexibility have hindered a clear understanding of their structural evolution during redox reactions at an atomistic level. Here, by performing state-of-the-art finite-temperature ab initio Raman spectroscopy simulations, we inves- tigate the spectral fingerprints of S/DIB copolymers during consecutive reactions with lithium. We discuss in detail Raman spectral changes in particular frequency ranges which are common in S/DIB copolymers having short sulfur chains and those consisting of longer ones. We also highlight those distinctive spectroscopic fingerprints specific to local S/DIB structures containing only short or long sulfur chains. This distinction could serve to help distinguish between them experimentally. Our theoretically predicted results are in a good agreement with experimental Raman measurements on coin cells at different discharge stages. This work represents, for the first time, an attempt to compute operando Raman spectra using quantum-chemical calculations and provides a guideline for Raman spectral changes of arbitrary electrodes during the discharge.

Keywords

Li-S batteries
Quantum Chemistry
Spectroscopy
Polymer
Sulfur Cathodes

Supplementary materials

Title
Description
Actions
Title
Toward Ab initio Simulation of Operando Raman Spectroscopy: Application to Sulfur/Carbon Copolymer Cathodes in Li-S Batteries: Supportin Information
Description
This file (Supporting Information) provides additional explanations and details that complement the results presented in the main paper.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.