High-efficiency and long-lifetime deep-blue phosphorescent OLEDs using deuterated exciplex-forming host

18 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A suitable host material is pivotal for efficient and stable deep-blue phosphorescent organic light-emitting diodes (PhOLEDs). Here, we firstly construct a deuterated exciplex-forming host in literature and demonstrate that, besides enhancing molecular stability, deuteration could also reduce molecular reorganization energy and enhance molecular packing density of the host, not only improving its charge transport ability but also reducing shoulder emissions of dopant and accelerating the radiative decay for blue-shifted colour with higher photoluminescence efficiency. The corresponding deep-blue PhOLEDs simultaneously achieve a lower operation voltage and higher maximum external quantum efficiency of 27.4% and power efficiency of 41.2 lm/W. Moreover, a lifetime of 370 h to reach 90% of the initial luminance of 1000 cd/m2 with Commission Internationale de l'Eclairage coordinates of (0.148, 0.165) is achieved, a 1.6-fold enhancement with even blue-shifted colour compared to the protonated counterpart and representing the longest lifetime for deep-blue PhOLEDs at this specific colour.

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary Information including experimental details, Supplementary Figures and Tables.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.