Abstract
Integrating enzymatic reactions into computer-aided synthesis planning (CASP) should help devise more selective, economical, and greener synthetic routes. Herein we report the triple-transformer loop algorithm with biocatalysis (TTLAB) as a new CASP tool for chemo-enzymatic multistep retrosynthesis. Single-step retrosyntheses are performed using two triple transformer loops (TTL), one trained with chemical reactions from the US Patent Office (USPTO-TTL), the second one obtained by multitask transfer learning combining the USPTO dataset with preparative biotransformations from the literature (ENZR-TTL). Each TTL performs single-step retrosynthesis independently by tagging potential reactive sites in the product, predicting for each site possible starting materials (T1) and reagents or enzymes (T2), and validating the predictions via a forward transformer (T3). TTLAB combines predictions from both TTLs to explore multistep sequences using a heuristic best-first tree search and propose short routes from commercial building blocks including enantioselective biocatalytic steps. TTLAB can be used to assist chemoenzymatic route design.
Supplementary weblinks
Title
Github repository
Description
Code and instructions to compute multistep retrosynthesis as well as the code to tag reactive sites
Actions
View