Cross-coupling reactions with nickel, visible light, and tert-butylamine as a bifunctional additive

17 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Transition metal catalysis is crucial for the synthesis of complex molecules, with ligands and bases playing a pivotal role in optimizing cross-coupling reactions. Despite advancements in ligand design and base selection, achieving effective synergy between these components remains challenging. We present here a general approach to nickel-catalyzed photoredox reactions employing tert-butylamine as a cost-effective bifunctional additive, acting as the base and ligand. This method proves effective for C–O and C–N bond-forming reactions with a diverse array of nucleophiles, including phenols, aliphatic alcohols, anilines, sulfonamides, sulfoximines, and imines. Notably, the protocol demonstrates significant applicability in biomolecule derivatization and facilitates sequential one-pot functionalizations. Spectroscopic investigations revealed the robustness of the dynamic catalytic system, while elucidation of structure-reactivity relationships demonstrated how computed molecular properties of both the nucleophile and electrophile correlated to reaction performance, providing a foundation for effective reaction outcome prediction.

Keywords

AD-HoC
photoredox catalysis
visible light
nickel
cross-coupling
difunctionalization

Supplementary materials

Title
Description
Actions
Title
Kinetic, spectroscopic and computational data
Description
Synthesis procedures, kinetic data, NMR spectroscopic data, X-ray, computational data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.