Simulation of Ultrafast Excited-State Dynamics in Fe(II) Complexes: Assessment of Electronic Structure Descriptions

18 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The assessment of electronic structure descriptions utilized in the simulation of ultrafast excited-state dynamics of Fe(II) complexes is presented. Herein, we evaluate the performance of the RPBE, OPBE, BLYP, B3LYP, B3LYP*, CAM-B3LYP, and LC-BLYP (time-dependent) density functional theory (DFT/TD-DFT) methods in full-dimensional trajectory surface hopping (TSH) simulations carried out on linear vibronic coupling (LVC) potentials. We exploit the existence of time-resolved X-ray emission spectroscopy (XES) data for the [Fe(bmip)2]2+ and [Fe(terpy)2]2+ prototypes for dynamics between metal-to-ligand charge transfer (MLCT) and metal-centered (MC) states, which serve as a reference to benchmark the calculations (bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, terpy = 2,2’:6’,2''-terpyridine). The results show that the simulated ultrafast population dynamics between MLCT and MC states with various spin multiplicilities (singlet, triplet, quintet) highly depend on the utilized DFT/TD-DFT method with the percentage of exact (Hartree-Fock) exchange being the governing factor. Importantly, B3LYP* is the only DFT/TD-DFT method reproducing all important aspects of the experimentally resolved dynamics for both complexes, signalling an optimal balance in the description of MLCT-MC energetics. This work demonstrates the power of combining TSH/LVC dynamics simulations with time-resolved experimental reference data to benchmark full-dimensional potential energy surfaces.

Keywords

Ultrafast dynamics
Excited-state dynamics
Trajectory surface hopping
Linear vibronic coupling
Time-dependent density functional theory

Supplementary materials

Title
Description
Actions
Title
SI data files
Description
LVC parameters and equilibrium geometries
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.