Structure-selection dynamics of cobalt nanoparticles from solution synthesis and their impact on the catalytic functionality

13 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Resolving the three-dimensional structure of transition metal oxide nanoparticles (TMO-NPs), upon self-restructuring from solution is crucial for tuning their structure-functionality. Yet, this remains challenging as this process entails complex struc-ture fluctuations, which are difficult to track experimentally, and hence, hinder the knowledge-driven optimization of TMO-NPs. Herein, we combine high-energy synchrotron X-ray absorption/scattering data with atomistic multiscale simulations to investigate the self-restructuring of self-assembled Co-NPs from solution under dark or photocatalytic water oxidation condi-tions at distinct reaction times and atomic length-scales. Using the atomic range order as a descriptor, we reveal that dissolu-tion of a Co-salt in borate buffer leads to a self-optimization route forming disordered oxyborite Co3BOx-NPs unveiling a high oxygen yield due to the formation of surface oxo/hydroxo adsorbates. Those NPs further self-restructure into distorted Co3O4-NPs, and lastly, into CoOOH-NPs through a rate-limiting step integrating Co3+-states during the course of a representative photocatalytic assay. Self-restructuring does not proceed from amorphous-to-ordered states, but through stochastic fluctua-tions of atomic nanoclusters of 10 Å domain size. Our key insight into the structure-selection dynamics of TMO-NPs from solution offers new routes for tunning their structure-function relationships.

Keywords

cobalt nanoparticles
Atomic short-range order

Supplementary materials

Title
Description
Actions
Title
Supplementary Information: Structure-selection dynamics of cobalt nanoparticles from solution synthesis and their impact on the catalytic functionality
Description
Supplementary Information file for the manuscript Structure-selection dynamics of cobalt nanoparticles from solution synthesis and their impact on the catalytic functionality
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.