High-resolution geospatial database: national criteria-air-pollutant concentrations in the contiguous U.S., 2016 – 2020

10 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Concentrations estimates for ambient air pollution are used widely in fields such as environmental epidemiology, health impact assessment, urban planning, environmental equity, and sustainability. This study builds on previous efforts by developing an updated high-resolution geospatial database of population-weighted annual-average concentrations for six criteria air pollutants (PM2.5, PM10, CO, NO2, SO2, O3) across the contiguous U.S. during a five-year period (2016-2020). We developed Land Use Regression (LUR) models within a partial-least-square – universal kriging framework by incorporating several land use, geospatial, and satellite – based predictor variables. The LUR models were validated using conventional and clustered cross-validation, with the former consistently showing superior performance in capturing the variability of air quality. Most models demonstrated reliable performance (e.g., mean squared error – based R2 > 0.8, standardized root mean squared error < 0.1). We used the best modeling approach to develop estimates by Census Block, which were then population-weighted averaged at Census Block Group, Census Tract, and County geographies. Our database provides valuable insights into the dynamics of air pollution, with utility for environmental risk assessment, public health, policy, and urban planning.

Keywords

Criteria air pollutant
land use regression
empirical model
exposure assessment
geospatial data
environmental disparity
environmental hazard

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.