A combined experimental and computational exploration of heteroleptic cis-Pd2L2L’2 coordination cages through geometric complementarity

05 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Heteroleptic (mixed-ligand) coordination cages are of interest as host systems with more structurally and functionally complex cavities than homoleptic architectures. The design of heteroleptic cages, however, is far from trivial. In this work, we experimentally probed the self-assembly of Pd(II) ions with binary ligand combinations in a combinatorial fashion to search for new cis-Pd2L2L’2 heteroleptic cages. A hierarchy of computational analyses was then applied to these systems with the aim of elucidating key factors for rationalising self-assembly outcomes. Simple and inexpensive geometric analyses were shown to be effective in identifying complementary ligand pairs. Preliminary results demonstrated the viability of relatively rapid semi-empirical calculations for predicting the topology of thermodynamically favoured assemblies with rigid ligands, whilst more flexible systems proved challenging. Stemming from this, key challenges were identified for future work developing effective computational forecasting tools for self-assembled metallo-supramolecular systems.

Keywords

coordination cage
heteroleptic
self-assembly
high-throughput
computational screening

Supplementary materials

Title
Description
Actions
Title
Electronic Supporting Information
Description
The data that support the findings of this study, including details of synthesis and characterisation and computations are included.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.