Heterotelechelic Organometallic PEG Reagents Enable Modular Access to Complex Bioconjugates

30 August 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Organometallic oxidative addition complexes (OACs) have recently emerged as a powerful class of reagents for the rapid and chemoselective modification of biomolecules. Notably, the steric and electronic properties of the ligand and aryl group can be modified to tune the kinetic profile of the reaction and permit regioselective S-arylation. Using the recently developed dicyclohexylphosphine-based bidentate P,N-ligated Au(III) OACs, we computationally and experimentally examined the effects of sterically bulky and electron deficient aryl substrates to achieve selective S-arylation. With this mechanistic insight, aryl substrates based on 4-iodoanisole and 3,5-dimethyl-4-iodoanisole were incorporated as end groups to generate a heterotelechelic bis-Au(III) poly(ethylene glycol) (PEG). This reagent performed rapid and regioselective S-arylation with a model biomolecule, designed ankyrin repeat protein (DARPin), to form a protein-polymer OAC in situ. This OAC mediated a second S-arylation with biologically relevant thiolated small molecules (metal chelator, saccharide, and fluorophore) and macromolecules (polymer and therapeutic peptide). It is envisioned that this approach could be utilized for the rapid construction of biomacromolecular heteroconjugates with S-aryl linkages.

Keywords

Organometallic bioconjugation
S-arylation
Buried Volume

Supplementary materials

Title
Description
Actions
Title
Kunkel-Treacy_Supporting Information
Description
Experimental details, NMR spectra, characterization, and computational details (PDF).
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.